Neighborhood Semantics for Modal Logic Lecture 2

Eric Pacuit

University of Maryland, College Park pacuit.org epacuit@umd.edu

August 12, 2014

Plan

- ✓ Introductory Remarks
- ✓ Background: Relational Semantics for Modal Logic
- ✓ Why Non-Normal Modal Logic?
- Fundamentals
 - ✓ Subset Spaces
 - Neighborhood Semantics
- Why Neighborhood Semantics?

Neighborhood Frames

Let W be a non-empty set of states.

Any function $N: W \to \wp(\wp(W))$ is called a neighborhood function

A pair $\langle W, N \rangle$ is a called a neighborhood frame if W a non-empty set and N is a neighborhood function.

A neighborhood model based on $\mathfrak{F} = \langle W, N \rangle$ is a tuple $\langle W, N, V \rangle$ where $V : At \rightarrow \wp(W)$ is a valuation function.

Truth in a Model

•
$$\mathfrak{M}, w \models p$$
 iff $w \in V(p)$

•
$$\mathfrak{M}, w \models \neg \varphi$$
 iff $\mathfrak{M}, w \not\models \varphi$

•
$$\mathfrak{M}, w \models \varphi \land \psi$$
 iff $\mathfrak{M}, w \models \varphi$ and $\mathfrak{M}, w \models \psi$

Truth in a Model

•
$$\mathfrak{M}, w \models p$$
 iff $w \in V(p)$

•
$$\mathfrak{M}, w \models \neg \varphi$$
 iff $\mathfrak{M}, w \not\models \varphi$

•
$$\mathfrak{M}, w \models \varphi \land \psi$$
 iff $\mathfrak{M}, w \models \varphi$ and $\mathfrak{M}, w \models \psi$

▶
$$\mathfrak{M}, w \models \Box \varphi$$
 iff $\llbracket \varphi \rrbracket_{\mathfrak{M}} \in N(w)$

•
$$\mathfrak{M}, w \models \Diamond \varphi \text{ iff } W - \llbracket \varphi \rrbracket_{\mathfrak{M}} \not\in N(w)$$

where $\llbracket \varphi \rrbracket_{\mathfrak{M}} = \{ w \mid \mathfrak{M}, w \models \varphi \}.$

Let $N: W \to \wp \wp W$ be a neighborhood function and define $m_N: \wp W \to \wp W$:

for
$$X \subseteq W$$
, $m_N(X) = \{w \mid X \in N(w)\}$

1.
$$\llbracket p \rrbracket_{\mathfrak{M}} = V(p)$$
 for $p \in At$
2. $\llbracket \neg \varphi \rrbracket_{\mathfrak{M}} = W - \llbracket \varphi \rrbracket_{\mathfrak{M}}$
3. $\llbracket \varphi \land \psi \rrbracket_{\mathfrak{M}} = \llbracket \varphi \rrbracket_{\mathfrak{M}} \cap \llbracket \psi \rrbracket_{\mathfrak{M}}$
4. $\llbracket \Box \varphi \rrbracket_{\mathfrak{M}} = m_N(\llbracket \varphi \rrbracket_{\mathfrak{M}})$
5. $\llbracket \Diamond \varphi \rrbracket_{\mathfrak{M}} = W - m_N(W - \llbracket \varphi \rrbracket_{\mathfrak{M}})$

Suppose $W = \{w, s, v\}$ is the set of states and define a neighborhood model $\mathfrak{M} = \langle W, N, V \rangle$ as follows:

Suppose $W = \{w, s, v\}$ is the set of states and define a neighborhood model $\mathfrak{M} = \langle W, N, V \rangle$ as follows:

Suppose $W = \{w, s, v\}$ is the set of states and define a neighborhood model $\mathfrak{M} = \langle W, N, V \rangle$ as follows:

Suppose $W = \{w, s, v\}$ is the set of states and define a neighborhood model $\mathfrak{M} = \langle W, N, V \rangle$ as follows:

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

Eric Pacuit

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

 $\mathfrak{M}, s \models \Box p$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

 $\mathfrak{M}, s \models \Diamond p$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

 $\mathfrak{M}, w \models \Box \Box p$? $\mathfrak{M}, v \models \Diamond \Box p$?

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

 $\mathfrak{M}, w \models \Box \Box \rho$

 $\mathfrak{M}, \mathbf{v} \models \Diamond \Box \mathbf{p}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

$$V(p) = \{w, s\}$$
 and $V(q) = \{s, v\}$

• $\mathfrak{M}, w \models \langle \rangle \varphi$ iff $\exists X \in N(w)$ such that $\exists v \in X, \mathfrak{M}, v \models \varphi$ • $\mathfrak{M}, w \models []\varphi$ iff $\forall X \in N(w)$ such that $\forall v \in X, \mathfrak{M}, v \models \varphi$

• $\mathfrak{M}, w \models \langle]\varphi$ iff $\exists X \in N(w)$ such that $\forall v \in X, \mathfrak{M}, v \models \varphi$ • $\mathfrak{M}, w \models [\rangle \varphi$ iff $\forall X \in N(w)$ such that $\exists v \in X, \mathfrak{M}, v \models \varphi$

• $\mathfrak{M}, w \models \langle \rangle \varphi$ iff $\exists X \in N(w)$ such that $\exists v \in X, \mathfrak{M}, v \models \varphi$ • $\mathfrak{M}, w \models []\varphi$ iff $\forall X \in N(w)$ such that $\forall v \in X, \mathfrak{M}, v \models \varphi$

• $\mathfrak{M}, w \models \langle]\varphi \text{ iff } \exists X \in N(w) \text{ such that } \forall v \in X, \mathfrak{M}, v \models \varphi$ • $\mathfrak{M}, w \models [\rangle \varphi \text{ iff } \forall X \in N(w) \text{ such that } \exists v \in X, \mathfrak{M}, v \models \varphi$

- ▶ $\mathfrak{M}, w \models \langle] \varphi$ iff $\exists X \in N(w)$ such that $\forall v \in X$, $\mathfrak{M}, v \models \varphi$
- ▶ $\mathfrak{M}, w \models [\rangle \varphi \text{ iff } \forall X \in N(w) \text{ such that } \exists v \in X, \mathfrak{M}, v \models \varphi$

$$\blacktriangleright \ \mathfrak{M}, w \models \langle \] \varphi \text{ iff } \exists X \in \mathit{N}(w) \text{ such that } \forall v \in X, \ \mathfrak{M}, v \models \varphi$$

▶ $\mathfrak{M}, w \models [\rangle \varphi \text{ iff } \forall X \in N(w) \text{ such that } \exists v \in X, \mathfrak{M}, v \models \varphi$

Lemma

Let $\mathfrak{M} = \langle W, N, V \rangle$ be a neighborhood model. The for each $w \in W$,

- 1. *if* $\mathfrak{M}, w \models \Box \varphi$ *then* $\mathfrak{M}, w \models \langle] \varphi$
- **2**. *if* $\mathfrak{M}, w \models [\rangle \varphi$ *then* $\mathfrak{M}, w \models \Diamond \varphi$

However, the converses of the above statements are false.

- ▶ $\mathfrak{M}, w \models \langle] \varphi$ iff $\exists X \in N(w)$ such that $\forall v \in X, \mathfrak{M}, v \models \varphi$
- ▶ $\mathfrak{M}, w \models [\rangle \varphi \text{ iff } \forall X \in N(w) \text{ such that } \exists v \in X, \mathfrak{M}, v \models \varphi$

Lemma

- 1. If $\varphi \to \psi$ is valid in \mathfrak{M} , then so is $\langle]\varphi \to \langle]\psi$.
- 2. $\langle](\varphi \wedge \psi) \rightarrow (\langle]\varphi \wedge \langle]\psi)$ is valid in \mathfrak{M}

Investigate analogous results for the other modal operators defined above.

Two routes to a logical framework

- ✓ Identify interesting patterns that you (do not) want to represent
- 2. Identify interesting structures that you want to reason about

A (Dynamic) Logic of Knowledge, Evidence and Belief

J. van Benthem and EP. *Dynamic Logics of Evidence-Based Beliefs*. Studia Logica, 99, pp. 61 - 92, 2011.

J. van Benthem, D. Fernández-Duque and EP. *Evidence Logic: A New Look at Neighborhood Structures.* Proceedings of Advances in Modal Logic, King's College Publications, 2012.

J. van Benthem, D. Fernández-Duque and EP. *Evidence and Plausibility in Neighborhood Structures*. Annals of Pure and Applied Logic, 2013.

Setting the Stage: Evidence

Dempster-Shafer Theory of Evidence

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

 Bayesian Confirmation Theory (eg., E confirms H iff p(H | E) > p(H))

B. Fitelson. *The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity*. Philosophy of Science 66, 1999.

Setting the Stage: Evidence

► Artemov/Fitting's Justification Logic (t:φ: "t is a justification/proof for φ")

S. Artemov and M. Fitting. *Justification logic*. The Stanford Encyclopedia of Philosophy, 2012.

► Moss and Parikh's "topologic" (x, U ⊨ φ: "φ is true at the state x given that the current evidence/ "measurement" gathered is U")

L. Moss and R. Parikh. *Topological reasoning and the logic of knowledge*. Proceedings of TARK IV, Morgan Kaufmann, 1992.

Setting the Stage: Reasons

 Kratzer Semantics (modal base), believing for a *reason* (deriving an ordering on worlds from an ordering over propositions)

A. Kratzer. *What* must *and* can *must and can mean*. Linguistics and Philosophy 1 (1977) 337355.

C. List and F. Dietrich. Reasons for (prior) belief in bayesian epistemology. 2012.

Setting the Stage: Reasons

 Kratzer Semantics (modal base), believing for a *reason* (deriving an ordering on worlds from an ordering over propositions)

A. Kratzer. *What* must *and* can *must and can mean*. Linguistics and Philosophy 1 (1977) 337355.

C. List and F. Dietrich. Reasons for (prior) belief in bayesian epistemology. 2012.

Reason management (Default logic with priorities)

J. Horty. Reasons as Defaults. 2012.

Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of worlds the agent considers possible

Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of worlds the agent considers possible

Ignores how we arrived at this epistemic state
Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of worlds the agent considers possible

Ignores how we arrived at this epistemic state

Richest view: complete syntactic details of what we have learned so far (including the sources of each piece of evidence)

Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of worlds the agent considers possible

Ignores how we arrived at this epistemic state

Richest view: complete syntactic details of what we have learned so far (including the sources of each piece of evidence)

In between: family of subsets representing evidence from received from various (possible unreliable) sources

Let W be a set of possible worlds or states one of which represents the "actual" situation.

Let W be a set of possible worlds or states one of which represents the "actual" situation.

1. Sources may or may not be *reliable*: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.

Let W be a set of possible worlds or states one of which represents the "actual" situation.

- 1. Sources may or may not be *reliable*: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.
- 2. The evidence gathered from different sources (or even the same source) may be jointly inconsistent. And so, the intersection of all the gathered evidence may be empty.

Let W be a set of possible worlds or states one of which represents the "actual" situation.

- 1. Sources may or may not be *reliable*: a subset recording a piece of evidence need not contain the actual world. Also, agents need not know which evidence is reliable.
- 2. The evidence gathered from different sources (or even the same source) may be jointly inconsistent. And so, the intersection of all the gathered evidence may be empty.
- 3. Despite the fact that sources may not be reliable or jointly inconsistent, they are all the agent has for forming beliefs.

Evidential States

An evidential state is a collection of subsets of W.

Evidential States

An **evidential state** is a collection of subsets of W.

Assumptions:

- ▶ No evidence set is empty (no contradictory evidence),
- ► The whole universe *W* is an evidence set (agents know their 'space').

Evidential States

An **evidential state** is a collection of subsets of W.

Assumptions:

- No evidence set is empty (no contradictory evidence),
- ► The whole universe *W* is an evidence set (agents know their 'space').

In addition, much of the literature would suggest a 'monotonicity' assumption:

If the agent has evidence X and $X \subseteq Y$ then the agent has evidence Y.

Example: $W = \{w, v\}$ where p is true only at w

Example: $W = \{w, v\}$ where p is true only at w

There is no evidence for or against *p*.

There is evidence that supports *p*.

There is evidence that rejects *p*.

There is evidence that supports p and also evidence that rejects p.

Evidence Models

Evidence model: $\mathcal{M} = \langle W, E, V \rangle$

- W is a non-empty set of worlds,
- $V : At \rightarrow \wp(W)$ is a valuation function, and
- $E: W \to \wp(\wp(W))$ is an evidence relation

 $X \in E(w)$: "the agent accepts X as evidence at state w".

Uniform evidence model (*E* is a constant function): $\langle W, \mathcal{E}, V \rangle$, *w* where \mathcal{E} is the fixed family of subsets of *W* related to each state by *E*.

Assumptions

(Cons) For each state w, $\emptyset \notin E(w)$.

(Triv) For each state $w, W \in E(w)$.

The Basic Language \mathcal{L} of Evidence and Belief

$p \mid \neg \varphi \mid \varphi \land \psi \mid \langle \]\varphi \mid [B]\varphi \mid [A]\varphi$

- ▶ $[B]\varphi$ says that "the agents believes that φ is true" (based on her evidence)
- [A] φ says that "φ is true in all states" (which we interpret as the agent's knowledge)

$$\blacktriangleright \mathcal{M}, w \models p \text{ iff } w \in V(p) \qquad (p \in At)$$

•
$$\mathcal{M}, w \models \neg \varphi$$
 iff $\mathcal{M}, w \not\models \varphi$

$$\blacktriangleright \ \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$$

$$\blacktriangleright \mathcal{M}, w \models p \text{ iff } w \in V(p) \qquad (p \in At)$$

•
$$\mathcal{M}, w \models \neg \varphi$$
 iff $\mathcal{M}, w \not\models \varphi$

$$\blacktriangleright \ \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$$

M, w ⊨ ⟨]φ iff there exists X such that X ∈ E(w) and for all v ∈ X, M, v ⊨ φ

$$\blacktriangleright \mathcal{M}, w \models p \text{ iff } w \in V(p) \qquad (p \in At)$$

•
$$\mathcal{M}, w \models \neg \varphi$$
 iff $\mathcal{M}, w \not\models \varphi$

$$\blacktriangleright \ \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$$

M, w ⊨ ⟨]φ iff there exists X such that X ∈ E(w) and for all v ∈ X, M, v ⊨ φ

•
$$\mathcal{M}, w \models [A] \varphi$$
 iff for all $v \in W$, $\mathcal{M}, v \models \varphi$

"Having evidence for φ " vs. "Accepting φ as evidence"

We do not assume that the evidence sets are closed under supersets, though our semantic definition implies that the set of propositions that the agent has *evidence for* is closed under weakening.

So, an agent can have *evidence for* X without *accepting* the set X as evidence.

w-scenario: A maximal family of evidence sets $\mathcal{X} \subseteq E(w)$ that has the **finite intersection property** (f.i.p.: for each finite subfamily $\{X_1, \ldots, X_n\} \subseteq \mathcal{X}, \bigcap_{1 \le i \le n} X_i \ne \emptyset$).

w-scenario: A maximal family of evidence sets $\mathcal{X} \subseteq E(w)$ that has the **finite intersection property** (f.i.p.: for each finite subfamily $\{X_1, \ldots, X_n\} \subseteq \mathcal{X}, \bigcap_{1 \le i \le n} X_i \ne \emptyset$).

An agent believes φ at w if each w-scenario implies that φ is true (i.e., φ is true at each point in the intersection of each w-scenario).

Our definition of belief is very conservative, many other definitions are possible (there exists a w-scenario, "most" of the wscenarios,...)

• $\mathcal{M}, w \models p \text{ iff } w \in V(p)$ $(p \in At)$

$$\blacktriangleright \ \mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi$$

- $\blacktriangleright \ \mathcal{M}, \textit{\textit{w}} \models \varphi \land \psi \text{ iff } \mathcal{M}, \textit{\textit{w}} \models \varphi \text{ and } \mathcal{M}, \textit{\textit{w}} \models \psi$
- M, w ⊨ ζ]φ iff there exists X such that wEX and for all v ∈ X, M, v ⊨ φ
- $\blacktriangleright \ \mathcal{M}, w \models [A]\varphi \text{ iff for all } v \in W, \ \mathcal{M}, v \models \varphi$

▶ $\mathcal{M}, w \models p \text{ iff } w \in V(p)$ $(p \in At)$

$$\blacktriangleright \ \mathcal{M}, w \models \neg \varphi \text{ iff } \mathcal{M}, w \not\models \varphi$$

- $\blacktriangleright \ \mathcal{M}, w \models \varphi \land \psi \text{ iff } \mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, w \models \psi$
- M, w ⊨ ζ]φ iff there exists X such that wEX and for all v ∈ X, M, v ⊨ φ
- $\blacktriangleright \ \mathcal{M}, w \models [A]\varphi \text{ iff for all } v \in W, \ \mathcal{M}, v \models \varphi$
- M, w ⊨ [B]φ for all w-scenarios X ⊆ E(w), for all v ∈ ∩ X,
 M, v ⊨ φ

Notation for the truth set: $\llbracket \varphi \rrbracket_{\mathcal{M}} = \{ w \mid \mathcal{M}, w \models \varphi \}$

Flat Evidence Models

An evidence model ${\mathcal M}$ is **flat** if every scenario on ${\mathcal M}$ has non-empty intersection.

Proposition. The formula $\langle]\varphi \rightarrow \langle B \rangle \varphi$ is valid on the class of flat evidence models, but not on the class of all evidence models.

- 1. Prove that $\langle]\varphi \wedge [A]\psi \leftrightarrow \langle](\varphi \wedge [A]\psi)$ is valid on all evidence models.
- 2. Prove that $[B]\varphi \rightarrow [A][B]\varphi$ is valid on all uniform evidence models.
- 3. Show that $\langle \;]\varphi \to \langle \;]\langle \;]\varphi$ is only valid on uniform evidence models.

M. Pauly. A Modal Logic for Coalitional Powers in Games. Journal of Logic and Computation, 12:1, pp. 149 - 166, 2002.

M. Pauly. *Logic for Social Software*. PhD Thesis, Institute for Logic, Language and Computation, 2001.

Strategic Game Forms

 $\langle N, \{S_i\}_{i \in N}, O, o \rangle$

- N is a finite set of players;
- For each i ∈ N, S_i is a non-empty set (elements of which are called actions or strategies);
- O is a non-empty set (elements of which are called outcomes); and
- $o: \prod_{i \in N} S_i \to O$ is a function assigning an outcome

Ann

α -Effectivity

 $S = \prod_{i \in N} S_i$ are called **strategy profiles**. Given a strategy profile $s \in S$, let s_i denote *i*'s component and s_{-i} the profile of strategies from *s* for all players except *i*.

A strategy for a coalition *C* is a sequence of strategies for each player in *C*, i.e., $s_C \in \prod_{i \in C} S_i$ (similarly for $s_{\overline{C}}$, where \overline{C} is N - C).

α -Effectivity

 $S = \prod_{i \in N} S_i$ are called **strategy profiles**. Given a strategy profile $s \in S$, let s_i denote *i*'s component and s_{-i} the profile of strategies from *s* for all players except *i*.

A strategy for a coalition *C* is a sequence of strategies for each player in *C*, i.e., $s_C \in \prod_{i \in C} S_i$ (similarly for $s_{\overline{C}}$, where \overline{C} is N - C).

Suppose that $G = \langle N, \{S_i\}_{i \in N}, O, o \rangle$ be a strategic game form. An α -effectivity function is a map $E_G^{\alpha} : \wp(N) \to \wp(\wp(O))$ defined as follows: For all $C \subseteq N$, $X \in E_G^{\alpha}(C)$ iff there exists a strategy profile s_C such that for all $s_{\overline{C}} \in \prod_{i \in N-C} S_i$, $o(s_C, s_{\overline{C}}) \in X$. α -Effectivity vs. β -Effectivity

 \exists "something a player/a coalition *can* do" such that \forall "actions of the other players/nature"...

 α -Effectivity vs. β -Effectivity

 \exists "something a player/a coalition *can* do" such that \forall "actions of the other players/nature"...

 \forall "(joint) actions of the other players", \exists "something the agent/coalition can do"...

		Bob	
		t_1	t_2
	s 1	<i>o</i> 1	<i>o</i> ₂
	s ₂	<i>o</i> ₂	0 3
	s 3	<i>0</i> 4	<i>o</i> 1

<

 $E^{\alpha}_{G_0}(\{A\}) = sup(\{\{o_1, o_2\}, \{o_2, o_3\}, \{o_1, o_4\}\})$

 $E^{\alpha}_{G_0}(\{A\}) = sup(\{\{o_1, o_2\}, \{o_2, o_3\}, \{o_1, o_4\}\})$ $E^{\alpha}_{G_0}(\{B\}) = sup(\{\{o_1, o_2, o_4\}, \{o_1, o_2, o_3\}\})$

$$\begin{split} E^{\alpha}_{G_0}(\{A\}) &= sup(\{\{o_1, o_2\}, \{o_2, o_3\}, \{o_1, o_4\}\}) \\ E^{\alpha}_{G_0}(\{B\}) &= sup(\{\{o_1, o_2, o_4\}, \{o_1, o_2, o_3\}\}) \\ E^{\alpha}_{G_0}(\{A, B\}) &= sup(\{o_1\}, \{o_2\}, \{o_3\}, \{o_4\}\}) = \wp(O) - \emptyset \end{split}$$

$$\begin{split} E^{\alpha}_{G_0}(\{A\}) &= \sup(\{\{o_1, o_2\}, \{o_2, o_3\}, \{o_1, o_4\}\}) \\ E^{\alpha}_{G_0}(\{B\}) &= \sup(\{\{o_1, o_2, o_4\}, \{o_1, o_2, o_3\}\}) \\ E^{\alpha}_{G_0}(\{A, B\}) &= \sup(\{o_1\}, \{o_2\}, \{o_3\}, \{o_4\}\}) = \wp(O) - \emptyset \\ E^{\alpha}_{G_0}(\emptyset) &= \{\{o_1, o_2, o_3, o_4, o_5, o_6\}\} \end{split}$$

1. (Liveness) For all $C \subseteq N$, $\emptyset \notin E(C)$

- 1. (Liveness) For all $C \subseteq N$, $\emptyset \notin E(C)$
- 2. (Safety) For all $C \subseteq N$, $O \in E(C)$

- 1. (*Liveness*) For all $C \subseteq N$, $\emptyset \notin E(C)$
- 2. (Safety) For all $C \subseteq N$, $O \in E(C)$
- 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$

- 1. (*Liveness*) For all $C \subseteq N$, $\emptyset \notin E(C)$
- 2. (Safety) For all $C \subseteq N$, $O \in E(C)$
- 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$
- 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$

- 1. (*Liveness*) For all $C \subseteq N$, $\emptyset \notin E(C)$
- 2. (Safety) For all $C \subseteq N$, $O \in E(C)$
- 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$
- 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$
- 5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

 $E(\{i\}) = \{X \mid X \subseteq \mathbb{N} \text{ is infinite}\};$ $E(\emptyset) = \{X \mid X \subseteq \mathbb{N} \text{ is cofinite (i.e., } \overline{X} \text{ is finite})\};$ $E(\{i\}) = \{X \mid X \subseteq \mathbb{N} \text{ is infinite}\};$ $E(\emptyset) = \{X \mid X \subseteq \mathbb{N} \text{ is cofinite (i.e., } \overline{X} \text{ is finite})\};$

Claim. *E* satisfies Liveness, Safety, *N*-maximality, Outcome Monotonicity, Superadditivity, but is not the effectivity function of any game.

Core-Complete

Suppose that (W, \mathcal{F}) is a monotonic subset space. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

 $\mathcal{F}^{nc} = \{X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W, \text{ if } X' \subseteq X, \text{ then } X' \notin \mathcal{F}\}.$

Does every subset space (W, \mathcal{F}) have a non-monotonic core?

Core-Complete

Suppose that (W, \mathcal{F}) is a monotonic subset space. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

 $\mathcal{F}^{nc} = \{X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W, \text{ if } X' \subseteq X, \text{ then } X' \notin \mathcal{F} \}.$

Does every subset space (W, \mathcal{F}) have a non-monotonic core? No.

Core-Complete

Suppose that (W, \mathcal{F}) is a monotonic subset space. The **non-monotonic core**, denoted \mathcal{F}^{nc} , is a subset of \mathcal{F} defined as follows:

 $\mathcal{F}^{nc} = \{X \mid X \in \mathcal{F} \text{ and for all } X' \subseteq W, \text{ if } X' \subseteq X, \text{ then } X' \notin \mathcal{F}\}.$

Does every subset space (W, \mathcal{F}) have a non-monotonic core? No.

A monotonic collection of sets \mathcal{F} is **core-complete** provided for all $X \in \mathcal{F}$, there exists a $Y \in \mathcal{F}^{nc}$ such that $Y \subseteq X$.

Observation. Suppose that $G = \langle N, \{S_i\}_{i \in N}, O, o \rangle$ is a strategic game form and E_G^{α} is the associated α -effectivity function. Then the non-monotonic core of $E_G^{\alpha}(\emptyset) = \{range(o)\}$, where $range(o) = \{x \in O \mid \text{there is a } s \in \prod_{i \in N} S_i \text{ such that } o(s) = x\}$.

Observation. Suppose that $G = \langle N, \{S_i\}_{i \in N}, O, o \rangle$ is a strategic game form and E_G^{α} is the associated α -effectivity function. Then the non-monotonic core of $E_G^{\alpha}(\emptyset) = \{range(o)\}$, where $range(o) = \{x \in O \mid \text{there is a } s \in \prod_{i \in N} S_i \text{ such that } o(s) = x\}$.

Claim. If $E(\emptyset) = \{Y \mid Y \text{ is co-finite}\}$, then $E^{nc}(\emptyset) = \emptyset$.

Observation. Suppose that $G = \langle N, \{S_i\}_{i \in N}, O, o \rangle$ is a strategic game form and E_G^{α} is the associated α -effectivity function. Then the non-monotonic core of $E_G^{\alpha}(\emptyset) = \{range(o)\}$, where $range(o) = \{x \in O \mid \text{there is a } s \in \prod_{i \in N} S_i \text{ such that } o(s) = x\}$.

Claim. If $E(\emptyset) = \{Y \mid Y \text{ is co-finite}\}$, then $E^{nc}(\emptyset) = \emptyset$.

6. (*Empty Coalition*) $E(\emptyset)$ is core complete.

Characterizing Playable Effectivity Functions

Theorem (Pauly 2001; Goranko, Jamorga and Turrini 2013). If $E : \wp(N) \to \wp(\wp(O))$ is a function that satisfies the conditions 1-6 given above, then $E = E_G^{\alpha}$ for some strategic game form.

V. Goranko, W. Jamroga, and P. Turrini. *Strategic Games and Truly Playable Effectivity Functions*. Journal of Autonomous Agents and Multiagent Systems, 26(2), pgs. 288 - 314, 2013.

M. Pauly. *Logic for Social Software*. PhD Thesis, Institute for Logic, Language and Computation, 2001.

Coalitional Models

A coalitional logic model is a tuple $\mathcal{M} = \langle W, E, V \rangle$ where W is a set of states, $E : W \to (\wp(N) \to \wp(\wp(W)))$ assigns to each state a playable effectivity function, and $V : At \to \wp(W)$ is a valuation function.

$$\mathcal{M}, w \models [C] \varphi \text{ iff } \llbracket \varphi \rrbracket_{\mathcal{M}} = \{ w \mid \mathcal{M}, w \models \varphi \} \in E(w)(C)$$

Coalitional Logic: Axiomatics

- 1. (*Liveness*) For all $C \subseteq N$, $\emptyset \notin E(C)$
- 2. (Safety) For all $C \subseteq N$, $O \in E(C)$
- 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$
- 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$
- 5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

- Coalitional Logic: Axiomatics
 - 1. (Liveness) $\neg[C] \bot$
 - 2. (Safety) For all $C \subseteq N$, $O \in E(C)$
 - 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$
 - 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$
 - 5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

- Coalitional Logic: Axiomatics
 - 1. (Liveness) $\neg[C] \bot$
 - 2. (Safety) [C] \top
 - 3. (*N*-maximality) For all $X \subseteq O$, if $X \in E(N)$ then $\overline{X} \notin E(\emptyset)$
 - 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$
 - 5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

- Coalitional Logic: Axiomatics
 - 1. (Liveness) $\neg[C] \bot$
 - 2. (Safety) $[C]^{\top}$
 - 3. (*N*-maximality) $[N]\varphi \rightarrow \neg[\emptyset]\neg\varphi$
 - 4. (Outcome-monotonicity) For all $X \subseteq X' \subseteq O$, and $C \subseteq N$, if $X \in E(C)$ then $X' \in E(C)$
 - 5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

- Coalitional Logic: Axiomatics
 - 1. (Liveness) $\neg[C] \bot$
 - 2. (Safety) $[C]^{\top}$
 - 3. (*N*-maximality) $[N]\varphi \rightarrow \neg[\emptyset]\neg\varphi$
 - 4. (Outcome-monotonicity) $[C](\varphi \land \psi) \rightarrow ([C]\varphi \land [C]\psi)$

5. (Superadditivity) For all subsets X_1, X_2 of O and sets of agents C_1, C_2 , if $C_1 \cap C_2 = \emptyset$, $X_1 \in E(C_1)$ and $X_2 \in E(C_2)$, then $X_1 \cap X_2 \in E(C_1 \cup C_2)$

- Coalitional Logic: Axiomatics
 - 1. (Liveness) $\neg[C] \bot$
 - 2. (Safety) $[C]^{\top}$
 - 3. (*N*-maximality) $[N]\varphi \rightarrow \neg[\emptyset]\neg\varphi$
 - 4. (Outcome-monotonicity) $[C](\varphi \land \psi) \rightarrow ([C]\varphi \land [C]\psi)$

5. (Superadditivity) $([C_1]\varphi_1 \wedge [C_2]\varphi_2) \rightarrow [C_1 \cup C_2](\varphi_1 \wedge \varphi_2)$, where $C_1 \cap C_2 = \emptyset$

Subset Space Models

L. Moss and R. Parikh. *Topological Reasoning and The Logic of Knowledge*. TARK (1992).

Subset Models

A **Subset Frame** is a pair $\langle W, \mathcal{O} \rangle$ where

- W is a set of states
- $\mathcal{O} \subseteq \wp(W)$ is a set of subsets of W, i.e., a set of observations

Neighborhood Situation: Given a subset frame $\langle W, \mathcal{O} \rangle$, (w, U) is called a neighborhood situation, provided $w \in U$ and $U \in \mathcal{O}$.

Model: $\langle W, \mathcal{O}, V \rangle$, where $V : At \to \wp(W)$ is a valuation function.

Language: $\varphi := p \mid \varphi \land \varphi \mid \neg \varphi \mid K\varphi \mid \Diamond \varphi$.

 $w, U \models \varphi$ with $w \in U$ is defined as follows:

 $w, U \models \varphi$ with $w \in U$ is defined as follows:

• $w, U \models p$ iff $w \in V(p)$

 $w, U \models \varphi$ with $w \in U$ is defined as follows:

•
$$w, U \models p$$
 iff $w \in V(p)$

•
$$w, U \models \neg \varphi$$
 iff $w, U \not\models \varphi$

•
$$w, U \models \varphi \land \psi$$
 iff $w, U \models \varphi$ and $w, U \models \psi$

 $w, U \models \varphi$ with $w \in U$ is defined as follows:

•
$$w, U \models p$$
 iff $w \in V(p)$

•
$$w, U \models \neg \varphi$$
 iff $w, U \not\models \varphi$

•
$$w, U \models \varphi \land \psi$$
 iff $w, U \models \varphi$ and $w, U \models \psi$

•
$$w, U \models K\varphi$$
 iff for all $v \in U$, $v, U \models \varphi$

 $w, U \models \varphi$ with $w \in U$ is defined as follows:

• $w, U \models p$ iff $w \in V(p)$

•
$$w, U \models \neg \varphi$$
 iff $w, U \not\models \varphi$

•
$$w, U \models \varphi \land \psi$$
 iff $w, U \models \varphi$ and $w, U \models \psi$

- $w, U \models K\varphi$ iff for all $v \in U, v, U \models \varphi$
- ▶ $w, U \models \Diamond \varphi$ iff there is a $V \in O$ such that $w \in V$ and $w, V \models \varphi$

Axioms

1. All propositional tautologies

2.
$$(p \rightarrow \Box p) \land (\neg p \rightarrow \Box \neg p)$$
, for $p \in At$.

- 3. $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- **4**. $\Box \varphi \rightarrow \varphi$
- 5. $\Box \varphi \rightarrow \Box \Box \varphi$
- 6. $K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$
- 7. $K\varphi \rightarrow \varphi$
- 8. $K\varphi \rightarrow KK\varphi$
- 9. $\neg K\varphi \rightarrow K \neg K\varphi$
- **10**. $K \Box \varphi \rightarrow \Box K \varphi$

We include the following rules: modus ponens, K_i -necessitation and \Box -necessitation.

Theorem

The previous axioms are sound and complete for the class of all subset models.

L. Moss and R. Parikh. *Topological Reasoning and The Logic of Knowledge*. TARK (1992).

Fact: $\Box \Diamond \varphi \rightarrow \Diamond \Box \varphi$ is sound for spaces closed under intersections.

Fact: $\Diamond \varphi \land L \Diamond \psi \rightarrow \Diamond [\Diamond \varphi \land L \Diamond \psi \land K \Diamond L (\varphi \lor \psi)]$ is sound for spaces closed under binary unions.

Overview of Results

- ► (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where O is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)

Overview of Results

- (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where O is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)

Overview of Results

- ▶ (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where O is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)
Plan

- ✓ Introductory Remarks
- ✓ Background: Relational Semantics for Modal Logic
- ✓ Why Non-Normal Modal Logic?
- ✓ Fundamentals
 - ✓ Subset Spaces
 - Neighborhood Semantics
- ✓ Why Neighborhood Semantics?

Plan

- Neighborhood Semantics in the Broader Logical Landscape
- Completeness, Decidability, Complexity
- Incompleteness
- Relation with Relational Semantics
- Model Theory

The Broader Logical Landscape

- Relational Models
- Topological Models
- n-ary Relational Structures
- Plausibility Structures
- First-Order Logic

From Kripke Frames to Neighborhood Frames

Let $R \subseteq W \times W$, define a map $R^{\rightarrow} : W \rightarrow \wp W$:

for each
$$w \in W$$
, let $R^{\rightarrow}(w) = \{v \mid wRv\}$

From Kripke Frames to Neighborhood Frames

Let $R \subseteq W \times W$, define a map $R^{\rightarrow} : W \rightarrow \wp W$:

for each
$$w \in W$$
, let $R^{\rightarrow}(w) = \{v \mid wRv\}$

Definition

Given a relation R on a set W and a state $w \in W$. A set $X \subseteq W$ is R-necessary at w if $R^{\rightarrow}(w) \subseteq X$.

From Kripke Frames to Neighborhood Frames Let $R \subseteq W \times W$, define a map $R^{\rightarrow} : W \rightarrow \wp W$: for each $w \in W$, let $R^{\rightarrow}(w) = \{v \mid wRv\}$

Let \mathcal{N}_{w}^{R} be the set of sets that are *R*-necessary at *w*:

$$\mathcal{N}_w^R = \{X \mid R^{\rightarrow}(w) \subseteq X\}$$

From Kripke Frames to Neighborhood Frames Let $R \subseteq W \times W$, define a map $R^{\rightarrow} : W \rightarrow \wp W$: for each $w \in W$, let $R^{\rightarrow}(w) = \{v \mid wRv\}$

Let \mathcal{N}_{w}^{R} be the set of sets that are *R*-necessary at *w*:

$$\mathcal{N}_w^R = \{X \mid R^{\rightarrow}(w) \subseteq X\}$$

Lemma

Let R be a relation on W. Then for each $w \in W$, \mathcal{N}_w^R is augmented.

From Kripke Frames to Neighborhood Frames

Properties of R are reflected in \mathcal{N}_w^R :

• If R is reflexive, then for each $w \in W$, $w \in \cap \mathcal{N}_w$

▶ If *R* is transitive then for each $w \in W$, if $X \in N_w$, then $\{v \mid X \in N_v\} \in N_w$.

Theorem

- ► Let (W, R) be a relational frame. Then there is an equivalent augmented neighborhood frame.
- ► Let (W, N) be an augmented neighborhood frame. Then there is an equivalent relational frame.

for all
$$X \subseteq W$$
, $X \in N(w)$ iff $X \in \mathcal{N}_w^R$.

Theorem

- Let (W, R) be a relational frame. Then there is an equivalent augmented neighborhood frame.
- ► Let ⟨W, N⟩ be an augmented neighborhood frame. Then there is an equivalent relational frame.

Theorem

- \checkmark Let $\langle W, R \rangle$ be a relational frame. Then there is an equivalent augmented neighborhood frame.
- ► Let (W, N) be an augmented neighborhood frame. Then there is an equivalent relational frame.

Proof.

For each $w \in W$, let $N(w) = \mathcal{N}_w^R$.

Theorem

- ► Let (W, R) be a relational frame. Then there is an equivalent augmented neighborhood frame.
- \checkmark Let $\langle W, N \rangle$ be an augmented neighborhood frame. Then there is an equivalent relational frame.

Proof.

For each $w, v \in W$, $wR_N v$ iff $v \in \cap N(w)$.

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, \mathcal{T} \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. \mathcal{T} is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions.

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, T \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. ${\mathcal T}$ is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions.

A neighborhood of w is any set X such that there is an $O \in \mathcal{T}$ with $w \in O \subseteq N$

Let \mathcal{T}_w be the collection of all neighborhoods of w.

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, T \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. ${\mathcal T}$ is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions.

Lemma

Let $\langle W, T \rangle$ be a topological space. Then for each $w \in W$, the collection \mathcal{T}_w contains W, is closed under finite intersections and closed under arbitrary unions.

The largest open subset of X is called the interior of X, denoted Int(X). Formally,

$$Int(X) = \cup \{ O \mid O \in \mathcal{T} \text{ and } O \subseteq X \}$$

The smallest closed set containing X is called the closure of X, denoted CI(X). Formally,

$$CI(X) = \cap \{C \mid W - C \in \mathcal{T} \text{ and } X \subseteq C\}$$

•
$$Int(X) = \cup \{ O \mid O \in \mathcal{T} \text{ and } O \subseteq X \}$$

•
$$CI(X) = \cap \{C \mid W - C \in \mathcal{T} \text{ and } X \subseteq C\}$$

Lemma

Let $\langle W, \mathcal{T} \rangle$ be a topological space and $X \subseteq W$. Then

1.
$$Int(X \cap Y) = Int(X) \cap Int(Y)$$

2.
$$Int(\emptyset) = \emptyset$$
, $Int(W) = W$

3.
$$Int(X) \subseteq X$$

4.
$$Int(Int(X)) = Int(X)$$

5.
$$Int(X) = W - Cl(W - X)$$

•
$$Int(X) = \cup \{ O \mid O \in \mathcal{T} \text{ and } O \subseteq X \}$$

•
$$CI(X) = \cap \{C \mid W - C \in \mathcal{T} \text{ and } X \subseteq C\}$$

Lemma

Let $\langle W, \mathcal{T} \rangle$ be a topological space and $X \subseteq W$. Then

- 1. $\Box(\varphi \land \psi) \leftrightarrow \Box \varphi \land \Box \psi$
- $2. \ \Box \bot \leftrightarrow \bot, \Box \top \leftrightarrow \top$
- **3**. $\Box \varphi \rightarrow \varphi$
- $4. \ \Box \Box \varphi \leftrightarrow \Box \varphi$
- 5. $\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi$

A topological model is a triple $\langle W, \mathcal{T}, V \rangle$ where $\langle W, \mathcal{T} \rangle$ is a topological space and V a valuation function.

A topological model is a triple $\langle W, \mathcal{T}, V \rangle$ where $\langle W, \mathcal{T} \rangle$ is a topological space and V a valuation function.

$$\mathbb{M}^{T}, w \models \Box \varphi$$
 iff $\exists O \in \mathcal{T}, w \in O$ such that $\forall v \in O, \mathbb{M}^{T}, v \models \varphi$

$$(\Box \varphi)^{\mathbb{M}^{T}} = Int((\varphi)^{\mathbb{M}^{T}})$$

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

Fact: A family \mathcal{B} of subsets of W is a basis for some topology if

- for each $w \in W$ there is a $U \in \mathcal{B}$ such that $w \in U$
- For each U, V ∈ B, if w ∈ U ∩ V then there is a W ∈ B such that w ∈ W ⊆ U ∩ V

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

Let $\mathbb{M} = \langle W, N, V \rangle$ be a neighborhood models. Suppose that N satisfies the following properties

- for each $w \in W$, N(w) is a filter
- for each $w \in W$, $w \in \cap N(w)$
- ▶ for each $w \in W$ and $X \subseteq W$, if $X \in N(w)$, then $m_N(X) \in N(w)$

Then there is a topological model that is point-wise equivalent to \mathbb{M} .

J. van Benthem and G. Bezhanishvili. *Modal Logics of Space*. Handbook of Spatial Logics, pgs. 217 - 298, 2007.

Generalized Relational Models

- *n*-ary relations
- multiple relations
- non-normal worlds

n-ary Relations

$(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi)$

n-ary Relations

$(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi)$

An *n*-ary relational model is a tuple $\langle W, R, V \rangle$ where W is a non-empty set and $R \subseteq W^n$ is an *n*-ary relation $(R \subseteq W^n)$ and $V : At \rightarrow \wp(W)$ is a valuation function. (Assume $n \ge 2$)

n-ary Relations

$(\Box \varphi \land \Box \psi) \to \Box (\varphi \land \psi)$

An *n*-ary relational model is a tuple $\langle W, R, V \rangle$ where W is a non-empty set and $R \subseteq W^n$ is an *n*-ary relation $(R \subseteq W^n)$ and $V : At \rightarrow \wp(W)$ is a valuation function. (Assume $n \ge 2$)

- ▶ $\mathcal{M}^n, w \models \Box \varphi$ iff for all $(w_1, \ldots, w_{n-1}) \in W^{n-1}$, if $(w, w_1, \ldots, w_n) \in R$, then there exists *i* such that $1 \le i \le n$ and $\mathcal{M}^n, w_i \models \varphi$.
- $\mathcal{M}^n, w \models \Diamond \varphi$ iff there exists $(w_1, \ldots, w_n) \in W^{n-2}$ such that $(w, w_1, \ldots, w_n) \in R$, and for all *i* such that $1 \le i \le n$, we have $\mathcal{M}^n, w_i \models \varphi$.

• $\mathcal{M}^3, w_1 \models \Box p \text{ (and } \mathcal{M}^3, w_1 \models \Box \neg p)$

$$\begin{array}{l} \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box p \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg p) \\ \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box q \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg q) \end{array}$$

$$\begin{array}{l} \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box p \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg p) \\ \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box q \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg q) \\ \blacktriangleright \ \mathcal{M}^3, w_1 \not\models \Box (p \land q) \end{array}$$

$$\mathcal{M}^{3}, w_{1} \models \Box p \text{ (and } \mathcal{M}^{3}, w_{1} \models \Box \neg p)$$

$$\mathcal{M}^{3}, w_{1} \models \Box q \text{ (and } \mathcal{M}^{3}, w_{1} \models \Box \neg q)$$

$$\mathcal{M}^{3}, w_{1} \not\models \Box (p \land q)$$

$$\mathcal{M}^{3}, w_{1} \models \Box r$$

$$\begin{array}{l} \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box p \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg p) \\ \blacktriangleright \ \mathcal{M}^3, w_1 \models \Box q \ (\text{and} \ \mathcal{M}^3, w_1 \models \Box \neg q) \\ \vdash \ \mathcal{M}^3, w_1 \not\models \Box (p \land q) \\ \vdash \ \mathcal{M}^3, w_1 \models \Box r \\ \vdash \ \mathcal{M}^3, w_1 \models \Box ((p \land r) \lor (q \land r)) \\ \end{array}$$

$(C^n) \qquad \bigwedge_{i=1}^n \Box \varphi_i \to \Box \bigvee_{1 \le k, l \le n, k \ne l} (\varphi_k \land \varphi_l)$
$(C^{n}) \qquad \bigwedge_{i=1}^{n} \Box \varphi_{i} \to \Box \bigvee_{1 \leq k, l \leq n, k \neq l} (\varphi_{k} \land \varphi_{l})$

Example: $(\Box \varphi_1 \land \Box \varphi_2 \land \Box \varphi_3) \rightarrow \Box ((\varphi_1 \land \varphi_2) \lor (\varphi_2 \land \varphi_3) \lor (\varphi_1 \land \varphi_3))$

Suppose that $L(\mathfrak{C}^n) = \{ \varphi \in \mathcal{L}(At) \mid \text{for all } \mathcal{F}^n \in \mathfrak{C}^n, \ \mathcal{F}^n \models \varphi \}.$ $\mathsf{EMN} = \bigcap_{n \ge 2} L(\mathfrak{C}^n)$

Theorem. The logic **EMNC**ⁿ is sound and complete for the class \mathfrak{C}^n of *n*-ary relational frames.

Proposition. Suppose that $\mathcal{M} = \langle W, N, V \rangle$ is finite monotonic neighborhood model such that for all $w \in W$, $N(w) \neq \emptyset$. Then, there is an *n*-ary relational model $\mathcal{M}^N = \langle W^N, R^N, V^N \rangle$ that is modally equivalent to \mathcal{M} .

Proposition. Suppose that $\mathcal{M}^n = \langle W, R, V \rangle$ is a finite *n*-ary relational model. Then, there is a finite monotonic neighborhood model $\mathcal{M}^R = \langle W^R, N^R, V^R \rangle$ that is modally equivalent to \mathcal{M}^n .

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi$ iff $\exists R \in \mathcal{R}$ such that $\forall v \in W$, if wRv then $\mathbb{M}, v \models \varphi$.

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi \text{ iff } \exists R \in \mathcal{R} \text{ such that } \forall v \in W, \text{ if } wRv \text{ then } \mathbb{M}, v \models \varphi.$

Are multi-relational semantics *equivalent* to neighborhood semantics?

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi \text{ iff } \exists R \in \mathcal{R} \text{ such that } \forall v \in W \text{, if } wRv \text{ then } \mathbb{M}, v \models \varphi.$

Are multi-relational semantics *equivalent* to neighborhood semantics? Almost

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi$ iff $\exists R \in \mathcal{R}$ such that $\forall v \in W$, if wRv then $\mathbb{M}, v \models \varphi$.

A world is called impossible if nothing is necessary and everything is possible.

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi \text{ iff } \exists R \in \mathcal{R} \text{ such that } \forall v \in W \text{, if } wRv \text{ then } \mathbb{M}, v \models \varphi.$

w is an impossible world iff $N(w) = \emptyset$

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi \text{ iff } \exists R \in \mathcal{R} \text{ such that } \forall v \in W, \text{ if } wRv \text{ then } \mathbb{M}, v \models \varphi.$

w is an impossible world iff $N(w) = \emptyset$

A multi-relational model with impossible worlds is a quadruple $\mathbb{M} = \langle W, Q, \mathcal{R}, V \rangle.$

A multi-relational Kripke model is a triple $\mathbb{M} = \langle W, \mathcal{R}, V \rangle$ where $\mathcal{R} \subseteq \wp(W \times W)$.

 $\mathbb{M}, w \models \Box \varphi$ iff $\exists R \in \mathcal{R}$ such that $\forall v \in W$, if wRv then $\mathbb{M}, v \models \varphi$. w is an impossible world iff $N(w) = \emptyset$

A multi-relational model with impossible worlds is a quadruple $\mathbb{M} = \langle W, Q, \mathcal{R}, V \rangle.$

 $\mathbb{M}, w \models \Box \varphi \text{ iff } w \notin Q \text{ and } \exists R \in \mathcal{R} \text{ such that } \forall v \in W, \text{ if } wRv \text{ then } \mathbb{M}, v \models \varphi.$

M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Synthese Library, 1983.

L. Goble. *Multiplex semantics for Deontic Logic*. Nordic Journal of Philosophical Logic, 5(2), pgs. 113-134, 2000.

G. Governatori and A. Rotolo. On the axiomatization of Elgesem's logic of agency and ability. Journal of Philosophical Logic, 34(4), pgs. 403 - 431, 2005.

Let $Th_{\mathcal{L}}(\mathcal{M}, w) = \{\varphi \in \mathcal{L} \mid \mathcal{M}, w \models \varphi\}$

Suppose that M and M' are two classes of models for \mathcal{L} . Say that \mathcal{M}, w is \mathcal{L} -equivalent to \mathcal{M}', w' , denoted $\mathcal{M}, w \equiv_{\mathcal{L}} \mathcal{M}', w'$, provided $Th_{\mathcal{L}}(\mathcal{M}, w) = Th_{\mathcal{L}}(\mathcal{M}', w')$.

A class of models M is \mathcal{L} -equivalent to a class of models M' provided for each pointed model \mathcal{M}, w from M, there exists a pointed model \mathcal{M}', w' from M' such that $\mathcal{M}, w \equiv_{\mathcal{L}} \mathcal{M}', w'$, and vice versa.

- The class K = {M | M is a relational model } is modally equivalent to the class
 M_{aug} = {M | M is an augmented neighborhood model}
- The class Kⁿ = {Mⁿ | M is an n-ary relational model } is modally equivalent to the class M_{reg} = {M | M is a consistent regular neighborhood model}
- ► The class $T = \{M^T \mid M \text{ is a topological model }\}$ is modally equivalent to the class $M_{S4} = \{M \mid M \text{ is an } S4 \text{ neighborhood model}\}$

End of lecture 2